Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
उत्तर
(1 + tan A + sec A) (1 + cot A – cosec A)
= 1 + cot A – cosec A + tan A + 1 – sec A + sec A + cosec A – cosec A sec A
= `2 + cosA/sinA + sinA/cosA - 1/(sinAcosA)`
= `2 + (cos^2A + sin^2A)/(sinAcosA) - 1/(sinAcosA)`
= `2 + 1/(sinAcosA) - 1/(sinAcosA)`
= 2
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ