Advertisements
Advertisements
प्रश्न
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
उत्तर
L.H.S = `(sintheta + "cosec" theta)/sin theta`
= `sintheta/sintheta + ("cosec"theta)/sintheta`
= 1 + cosec θ × cosec θ ......`[∵ "cosec" theta = 1/sin theta]`
= 1 + cosec2θ
= 1 + 1 + cot2θ .......[∵ 1 + cot2θ = cosec2θ]
= 2 + cot2θ
= R.H.S
∴ `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If 2sin2β − cos2β = 2, then β is ______.
If sin A = `1/2`, then the value of sec A is ______.
Eliminate θ if x = r cosθ and y = r sinθ.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`