Advertisements
Advertisements
प्रश्न
Eliminate θ if x = r cosθ and y = r sinθ.
उत्तर
x = r cosθ and y = r sinθ
Squaring on both terms,
x2 = r2cos2θ ...(1)
y2 = r2sin2θ ...(2)
Add (1) + (2).
x2 + y2 = r2sin2θ + r2cos2θ
x2 + y2 = r2(sin2θ + cos2θ)
But we know, (sin2θ + cos2θ) = 1
∴ x2 + y2 = r2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`