Advertisements
Advertisements
प्रश्न
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
उत्तर
LHS = `(sec θ - tan θ)/(sec θ + tan θ )`
= `(sec θ - tan θ)/(sec θ + tan θ ) xx (sec θ - tan θ)/(sec θ - tan θ )`
= `(sec θ - tan θ)^2/(sec^2θ - tan^2θ )`
= `(sec^2θ + tan^2θ - 2sec θ.tan θ )/1`
= 1 + 2 tan2θ - 2 sec θ. tan θ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.