Advertisements
Advertisements
प्रश्न
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
उत्तर
sin6θ + cos6θ
= (sin2θ)3 + (cos2θ)3
= (sin2θ + cos2θ)(sin4θ + cos2θ - sin2θcos2θ)
= 1 x [(sin2θ)2 + (cos2θ)2 + 2sin2θ.cos2θ - 3sin2θ.cos2θ]
= (sin2θ)2 + (cos2θ)2 - 3sin2θ.cos2θ
= 1 - 3sin2θ cos2θ.
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.