Advertisements
Advertisements
प्रश्न
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
उत्तर
LHS = `(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ)`
= `((cos θ + sin θ)(cos^2 θ + sin^2 θ - cos θ sin θ))/(cos θ + sin θ) + ((cos θ - sin θ)(cos^2 θ + sin^2 θ - cos θ sin θ))/(cos θ - sin θ)`
= 1 - sin θ cos θ + 1 + sin θ cos θ
= 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Choose the correct alternative:
cos 45° = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`