Advertisements
Advertisements
प्रश्न
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
उत्तर
L.H.S = `(1 + sec theta - tan theta)/(1 + sec theta + tan theta)`
= `(1 + 1//cos theta - sin theta//cos theta)/(1 + 1//cos theta + sin theta//cos theta)` ...`[∵ sec theta = 1/cos theta and tan theta = sin theta/cos theta]`
= `(cos theta + 1 - sin theta)/(cos theta + 1 + sin theta)`
= `((cos theta + 1) - sin theta)/((cos theta + 1) + sin theta)`
= `(2 cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2 cos^2 theta/2 + 2 sin theta/2 * cos theta/2)` ...`[∵ 1 + cos theta = 2 cos^2 theta/2 and sin theta = 2sin theta/2 cos theta/2]`
= `(2cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2cos^2 theta/2 + 2sin theta/2 * cos theta/2)`
= `(2cos theta/2 (cos theta/2 - sin theta/2))/(2cos theta/2(cos theta/2 + sin theta/2))`
= `(cos theta/2 - sin theta/2)/(cos theta/2 + sin theta/2) xx ((cos theta/2 - sin theta/2))/((cos theta/2 - sin theta/2))` ...[By rationalisation]
= `(cos theta/2 - sin theta/2)^2/((cos^2 theta/2 - sin^2 theta/2))` ...[∵ (a – b)2 = a2 + b2 – 2ab and (a – b)(a + b) = (a2 – b2)]
= `((cos^2 theta/2 + sin^2 theta/2) - (2 sin theta/2 * cos theta/2))/cos theta` ...`[∵ cos^2 theta/2 - sin^2 theta/2 = cos theta]`
= `(1 - sin theta)/cos theta` ...`[∵ sin^2 theta/2 + cos^2 theta/2 = 1]`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If tan θ × A = sin θ, then A = ?