Advertisements
Advertisements
प्रश्न
If tan θ × A = sin θ, then A = ?
उत्तर
tan θ × A = sin θ .....[Given]
∴ `(sin theta)/(cos theta) xx "A"` = sin θ
∴`1/(cos theta) xx "A"` = 1
∴ A = cos θ
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
If cosθ = `5/13`, then find sinθ.
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Choose the correct alternative:
1 + cot2θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Eliminate θ if x = r cosθ and y = r sinθ.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`