Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
उत्तर
L.H.S. `(1 - 2sin^2A)^2/(cos^4A - sin^4A)`
= `(1 - 2sin^2A)^2/((cos^2A)^2 - (sin^2A)^2`
= `(1 - 2sin^2A)^2/((cos^2A + sin^2A)(cos^2A - sin^2A))`
= `(1 - 2sin^2A)^2/((1)(1 - sin^2A - sin^2A)` ...[∵ cos2 A = 1 – sin2 A]
= `(1 - 2sin^2A)^2/((1 - 2sin^2A))`
= 1 – 2 sin2 A
= 1 – 2 (1 – cos2 A)
= 1 – 2 + 2 cos2 A
= 2 cos2 A – 1 = R.H.S.
Hence the result is proved.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`