Advertisements
Advertisements
प्रश्न
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
उत्तर
LHS = `(sin B + sec A)/sin A`
= `(sin (90 - A) + sec A)/sin A`
= `(cos A + sec A)/sin A`
= `(cos^2 A + 1)/(sin A. cos A)`
= `(2cos^2 A + sin^2 A)/(sin A. cos A)`
= 2cot A + tan A
= 2 tan B + tan A = RHS
hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`(sec^2 theta-1) cot ^2 theta=1`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
sec2θ – tan2θ =?