Advertisements
Advertisements
प्रश्न
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
उत्तर
LHS = `sqrt((1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ))`
= `sqrt((1 - cos θ)^2/(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(1 - cos^2θ))`
= `(1 - cos θ)/(sqrt(sin^2θ))`
= `(1 - cos θ)/(sin θ)`
= `(1)/(sin θ) - (cos θ)/(sin θ)`
= cosec θ - cot θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If sec θ = `25/7`, then find the value of tan θ.
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0