Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
उत्तर
LHS = `sqrt((1 + sin θ)/(1 - sin θ) xx (1 + sin θ)/(1 + sin θ))`
= `sqrt((1 + sin θ)^2/(1 - sin^2θ))`
= `sqrt((1 + sin θ)^2/(cos^2θ)`
= `(1 + sin θ)/cos θ = 1/cos θ + sin θ/cos θ`
= sec θ + tan θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?