मराठी

Prove the Following Trigonometric Identities. Sin2 A Cos2 B − Cos2 A Sin2 B = Sin2 A − Sin2 B - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B

उत्तर

We know that `sin^2 A + cos^2 A = 1`

So have

`sin^2 A cos^2 B - cos^2 A sin^2 B = sin^2 A (1 - sin^2 B) - (1 - sin^2 A) sin^2 B`

`= sin^2 A - sin^2 A sin^2 B - sin^2 B + sin^2 A sin^2 B`

`= sin^2 A - sin^2 B`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 69 | पृष्ठ ४६

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×