Advertisements
Advertisements
प्रश्न
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
उत्तर
LHS = `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
= `(cosec θ. cos θ. cot θ)/(cosec θ. cos θ. cot θ)`
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of cos1° cos 2°........cos180° .
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`