Advertisements
Advertisements
प्रश्न
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
उत्तर
L.H.S = (m2 + n2) cos2 β
= `((cos^2 alpha)/(cos^2 beta) + (cos^2 alpha)/(sin^2 beta))cos^2 beta`
= `((cos^2 alpha sin^2 beta + cos^2 alpha cos^2 beta)/(cos^2 beta sin^2 beta))cos^2 beta`
= `(cos^2 alpha (sin^2 beta + cos^2 beta) cos^2 beta)/(cos^2 beta sin^2 beta)`
= `(cos^2 alpha (1))/(sin^2 beta)`
= `((cos alpha)/sin beta)^2` = n2
L.H.S = R.H.S
⇒ ∴ (m2 + n2) cos2 β = n2
APPEARS IN
संबंधित प्रश्न
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
What is the value of (1 − cos2 θ) cosec2 θ?
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Find the value of sin 30° + cos 60°.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ