Advertisements
Advertisements
Question
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Solution
L.H.S = (m2 + n2) cos2 β
= `((cos^2 alpha)/(cos^2 beta) + (cos^2 alpha)/(sin^2 beta))cos^2 beta`
= `((cos^2 alpha sin^2 beta + cos^2 alpha cos^2 beta)/(cos^2 beta sin^2 beta))cos^2 beta`
= `(cos^2 alpha (sin^2 beta + cos^2 beta) cos^2 beta)/(cos^2 beta sin^2 beta)`
= `(cos^2 alpha (1))/(sin^2 beta)`
= `((cos alpha)/sin beta)^2` = n2
L.H.S = R.H.S
⇒ ∴ (m2 + n2) cos2 β = n2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ