Advertisements
Advertisements
Question
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Solution
`sqrt((1 + sinA)/(1 - sinA))`
= `sqrt((1 + sinA)/(1 - sinA) xx (1 - sinA)/(1 - sinA))`
= `sqrt((1 - sin^2A)/(1 - sinA)^2)`
= `sqrt(cos^2A/((1 - sinA)^2)`
= `cosA/(1 - sinA)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If 3 sin θ = 4 cos θ, then sec θ = ?
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`