Advertisements
Advertisements
Question
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
Solution
Proof: L.H.S. = `tan"A"/(1 + tan^2 "A")^2 + cot"A"/(1 + cot^2 "A")^2`
= `tan "A"/(sec^2"A")^2 + cot "A"/("cosec"^2"A")^2` ......`[(∵ 1 + cot^2θ = "cosec"^2θ),(1 + tan^2θ = sec^2θ)]`
= `tan "A"/sec^4"A" + cot "A"/("cosec"^4"A")`
= `sin "A"/cos "A" xx 1/(sec^4 "A") + cos "A"/sin "A" xx 1/("cosec"^4 "A")`
= `sin "A"/cos "A" xx cos^4"A" + cos "A"/sin "A" xx sin^4"A"`
= sinA × cos3A + cosA × sin3A
= sinA cosA (cos2A + sin2A)
= sinA cosA (1) ......[∵ cos2A + sin2A = 1]
= sinA.cosA
= R.H.S
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
sec θ when expressed in term of cot θ, is equal to ______.