Advertisements
Advertisements
प्रश्न
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
उत्तर
Proof: L.H.S. = `tan"A"/(1 + tan^2 "A")^2 + cot"A"/(1 + cot^2 "A")^2`
= `tan "A"/(sec^2"A")^2 + cot "A"/("cosec"^2"A")^2` ......`[(∵ 1 + cot^2θ = "cosec"^2θ),(1 + tan^2θ = sec^2θ)]`
= `tan "A"/sec^4"A" + cot "A"/("cosec"^4"A")`
= `sin "A"/cos "A" xx 1/(sec^4 "A") + cos "A"/sin "A" xx 1/("cosec"^4 "A")`
= `sin "A"/cos "A" xx cos^4"A" + cos "A"/sin "A" xx sin^4"A"`
= sinA × cos3A + cosA × sin3A
= sinA cosA (cos2A + sin2A)
= sinA cosA (1) ......[∵ cos2A + sin2A = 1]
= sinA.cosA
= R.H.S
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ