Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
उत्तर
Consider the table.
θ | 0° | 30° | 45° | 60° | 90° |
sin θ | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
cos θ | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
Here,
`sin 60°-cos 60°=sqrt3/2-1/2>0`
`sin 90°-cos 90°= 1-0>0 `
`so, sin 80°-cos 80° > 0` ` (sin θ-cos θ≥0AA45°≤ θ ≤ 90° )`
Therefore, the given statement is false.
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 2sin2β − cos2β = 2, then β is ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ