मराठी

Write True' Or False' and Justify Your Answer the Following : the Value of Sin θ+Cos θ is Always Greater than 1 - Mathematics

Advertisements
Advertisements

प्रश्न

 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .

चूक किंवा बरोबर

उत्तर

Consider the table.

θ 30° 45° 60° 90°
`sin θ` `0` `1/2` `1/sqrt2` `sqrt3/2` `1`
`cosθ` `1` `sqrt3/2` `1/sqrt2` `1/2` `0`

Here, 

`sin 90°+cos 90°=1+0=1`  Which is not greater than 1 Therefore, the given statement is false, 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 24.5 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Define an identity.


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


sec4 A − sec2 A is equal to


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


If cos θ = `24/25`, then sin θ = ?


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×