Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
उत्तर
Consider the table.
θ | 0° | 30° | 45° | 60° | 90° |
`sin θ` | `0` | `1/2` | `1/sqrt2` | `sqrt3/2` | `1` |
`cosθ` | `1` | `sqrt3/2` | `1/sqrt2` | `1/2` | `0` |
Here,
`sin 90°+cos 90°=1+0=1` Which is not greater than 1 Therefore, the given statement is false,
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Define an identity.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
sec4 A − sec2 A is equal to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If cos θ = `24/25`, then sin θ = ?
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.