Advertisements
Advertisements
प्रश्न
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
उत्तर
L.H.S. = `(1 + sec A)/sec A`
= `(1 + 1/ cos A)/(1/cos A)`
= `((cos A + 1)/cos A)/(1/cos A)`
= 1 + cos A = `((1 + cos A))/1 xx ((1 - cos A))/((1 - cos A))`
= `(1 - cos^2 A)/(1 - cos A)`
`\implies (sin^2 A)/(1 - cos A)` = R.H.S. ...(∵ sin2 A + cos2 A = 1)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Find the value of sin 30° + cos 60°.
If sec θ = `25/7`, then find the value of tan θ.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?