Advertisements
Advertisements
प्रश्न
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
उत्तर
LHS = `(1+ tan theta + cot theta )(sintheta - cos theta) `
=` sin theta + tan theta sin theta + cot theta sin theta - cos theta - tan theta cos theta - cot theta cos theta `
=`sin theta + tan theta sin theta + cos theta/sin theta xx sin theta - cos theta -sin theta/cos thetaxx cos theta - cot theta cos theta`
=`sin theta + tan theta sin theta + cos theta - cos theta - sin theta - cot theta cos theta`
=`tan theta sin theta - cot theta cos theta`
=`sin theta / cos theta xx 1/( cosec theta) - cos theta / sin theta xx 1/ sec theta`
=` 1/ (cosec theta) xx 1/ ( cosec theta ) xx sec theta - 1/ sec theta xx 1/ sec theta xx cosec theta`
=` sec theta / ( cosec^2 theta) - (cosec theta)/sec^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`sin^2 theta + 1/((1+tan^2 theta))=1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.