Advertisements
Advertisements
प्रश्न
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
उत्तर
LHS = `(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta)`
=`((cos theta sin theta)/(sin theta cos theta))/(cos theta + sin theta)`
=`(cos^2 theta - sin^2 theta)/(cos theta sin theta ( cos theta + sin theta))`
=`((cos theta + sin theta )( cos theta - sin theta))/(cos theta sin theta ( cos theta + sin theta))`
=`((cos theta - sin theta ))/(cos theta sin theta)`
=`1/ sin theta - 1/ cos theta`
=`cosec theta - sec theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
tan θ cosec2 θ – tan θ is equal to
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`