Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
उत्तर
L.H.S. = (1 + cot A – cosec A)(1 + tan A + sec A)
= `(1 + cosA/sinA - 1/sinA)(1 + sinA/cosA + 1/cosA)`
= `((sinA + cosA - 1)/sinA)((cosA + sinA + 1)/cosA)`
= `((sinA + cosA - 1)(sinA + cosA + 1))/(sinAcosA)`
= `((sinA + cosA)^2 - (1)^2)/(sinAcosA)`
= `(sin^2A + cos^2A + 2sinAcosA - 1)/(sinAcosA)`
= `(1 + 2sinAcosA - 1)/(sinAcosA)`
= `(2sinAcosA)/(sinAcosA)`
= 2 = R.H.S.
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.