मराठी

If Sin θ + Cos θ = X, Prove that `Sin^6 Theta + Cos^6 Theta = (4- 3(X^2 - 1)^2)/4` - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`

उत्तर

Given `sin theta + cos theta = x`

Squaring the given equation, we have

`(sin theta + cos theta)^2 = x^2`

`=> sin^2 theta + 2 sin theta cos theta = cos^2 theta = x^2`                                   

`=> (sin^2 theta + cos^2 theta) + 2sin theta cos theta = x^2`

`=> 1 + 2 sin theta cos theta = x^2`

`=> 2 sin theta cos theta = x^2  -1`

`=> sin theta cos theta = (x^2- 1)/2`

Squaring the last equation, we have

`(sin theta cos theta)^2 = (x^2  - 1)^2/4` 

`=> sin^2 theta cos^2 theta = (x^2 - 1)^2/4`

`=> sin^2 theta cos^2 theta = (s^2 -1)/4`

Therefore, we have

`sin^6 theta + cos^6 theta = (sin^2 theta)^3 + (cos^2 theta)^3`

`= (sin^2 theta + cos^2 theta)^3 -  3sin^3 theta cos^2 theta (sin^2 theta + cos^2 theta)`

`= (1)^3 - 3 ((x^2 - 1)^2)/4 (1)`

`= 1 - 3 (x^2 - 1)^2/4 (1)`

`x = 1 - 3 (x^2 - 1)^2/4`

`= (4- 3(x^2 - 1)^2)/4`

hence Proved

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 86 | पृष्ठ ४७

संबंधित प्रश्‍न

Express the ratios cos A, tan A and sec A in terms of sin A.


9 sec2 A − 9 tan2 A = ______.


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


If `sec theta = x ,"write the value of tan"  theta`.


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×