Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
उत्तर
Given `sin theta + cos theta = x`
Squaring the given equation, we have
`(sin theta + cos theta)^2 = x^2`
`=> sin^2 theta + 2 sin theta cos theta = cos^2 theta = x^2`
`=> (sin^2 theta + cos^2 theta) + 2sin theta cos theta = x^2`
`=> 1 + 2 sin theta cos theta = x^2`
`=> 2 sin theta cos theta = x^2 -1`
`=> sin theta cos theta = (x^2- 1)/2`
Squaring the last equation, we have
`(sin theta cos theta)^2 = (x^2 - 1)^2/4`
`=> sin^2 theta cos^2 theta = (x^2 - 1)^2/4`
`=> sin^2 theta cos^2 theta = (s^2 -1)/4`
Therefore, we have
`sin^6 theta + cos^6 theta = (sin^2 theta)^3 + (cos^2 theta)^3`
`= (sin^2 theta + cos^2 theta)^3 - 3sin^3 theta cos^2 theta (sin^2 theta + cos^2 theta)`
`= (1)^3 - 3 ((x^2 - 1)^2)/4 (1)`
`= 1 - 3 (x^2 - 1)^2/4 (1)`
`x = 1 - 3 (x^2 - 1)^2/4`
`= (4- 3(x^2 - 1)^2)/4`
hence Proved
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
If `sec theta = x ,"write the value of tan" theta`.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?