Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
उत्तर १
L.H.S. = `1/(secA + tanA)`
= `1/(1/cosA + sinA/cosA)`
= `1/((1 + sinA)/cosA)`
= `cosA/(1 + sinA) xx (1 - sinA)/(1 + sinA)`
= `(cosA(1 - sinA))/((1)^2 - sin^2A)`
= `(cosA(1 - sinA))/cos^2A`
= `1/cosA - sinA/cosA`
= sec A – tan A
L.H.S. = R.H.S.
Hence proved.
उत्तर २
L.H.S = `1/(secA + tanA)`
= `((secA - tanA))/((secA + tanA)(secA - tanA))` ...((Multiply Num. and Deno. by sec A – tan A)
= `(secA - tanA)/(sec^2A - tan^2A)`
= `(secA - tanA)/1` ...[∵ sec2 A – tan2 A = 1]
= sec A – tan A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ