Advertisements
Advertisements
प्रश्न
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
उत्तर
sec2θ = 1 + tan2θ ......[Fundamental trigonometric identity]
∴ sec2θ = 1 + `(9/40)^2`
∴ sec2θ = 1 + `81/1600`
∴ sec2θ = `1681/1600`
∴ sec θ = `41/40`
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan α + cot α = 2, then tan20α + cot20α = ______.