Advertisements
Advertisements
प्रश्न
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
उत्तर
L.H.S = `(1 + sec "A")/"sec A"`
= `1/"sec A" + "sec A"/"sec A"`
= cos A + 1
= `(1 + cos "A") xx (1 - cos"A")/(1 - cos"A")`
= `(1 - cos^2"A")/(1 - cos"A")`
= `(sin^2"A")/(1 - cos"A")` .......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= R.H.S
∴ `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that sin4A – cos4A = 1 – 2cos2A
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If sin A = `1/2`, then the value of sec A is ______.