Advertisements
Advertisements
प्रश्न
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
`sqrt((1 - cos^2 theta) sec^2 theta)`
= `sqrt(sin^2 theta * sec^2 theta)` ...[∵ sin2θ + cos2θ = 1]
= `sqrt(sin^2 theta * 1/(cos^2 theta)` ...`[∵ sec theta = 1/costheta, tan theta = sin theta/cos theta]`
= `sqrt(tan^2 theta)`
= tan θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ