Advertisements
Advertisements
प्रश्न
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
उत्तर
Given `cos theta + cos^2 theta = 1`
We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
From the given equation, we have
`cos theta + cos^2 theta = 1`
`=> cos theta = 1 - cos^2 theta`
`=> ccos theta = sin^2 theta`
`=> sin^2 theta = cos theta`
Therefore, we have
sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2
`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2`
`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`
`= (sin^4 theta + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`
`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`
= (1)^3 + 2(1) - 2
= 1
hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
What is the value of 9cot2 θ − 9cosec2 θ?
If sec θ + tan θ = x, then sec θ =
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If sec θ = `25/7`, then find the value of tan θ.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ