मराठी

If Cos θ + Cos2 θ = 1, Prove that Sin12 θ + 3 Sin10 θ + 3 Sin8 θ + Sin6 θ + 2 Sin4 θ + 2 Sin2 θ − 2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

उत्तर

Given `cos theta + cos^2 theta = 1`

We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

From the given equation, we have

`cos theta + cos^2 theta = 1`

`=> cos theta = 1 - cos^2 theta`

`=> ccos theta = sin^2 theta`

`=> sin^2 theta = cos theta`

Therefore, we have

sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2

`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2` 

`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`

`= (sin^4 theta  + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`

`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`

= (1)^3 + 2(1) - 2

= 1

hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 84 | पृष्ठ ४७

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


What is the value of 9cot2 θ − 9cosec2 θ? 


If sec θ + tan θ = x, then sec θ =


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


If sec θ = `25/7`, then find the value of tan θ.


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×