हिंदी

If Cos θ + Cos2 θ = 1, Prove that Sin12 θ + 3 Sin10 θ + 3 Sin8 θ + Sin6 θ + 2 Sin4 θ + 2 Sin2 θ − 2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

उत्तर

Given `cos theta + cos^2 theta = 1`

We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

From the given equation, we have

`cos theta + cos^2 theta = 1`

`=> cos theta = 1 - cos^2 theta`

`=> ccos theta = sin^2 theta`

`=> sin^2 theta = cos theta`

Therefore, we have

sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2

`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2` 

`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`

`= (sin^4 theta  + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`

`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`

= (1)^3 + 2(1) - 2

= 1

hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 84 | पृष्ठ ४७

संबंधित प्रश्न

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


9 sec2 A − 9 tan2 A is equal to


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Prove that:

tan (55° + x) = cot (35° – x)


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


Choose the correct alternative:

cos θ. sec θ = ?


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×