Advertisements
Advertisements
प्रश्न
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
उत्तर
Given `cos theta + cos^2 theta = 1`
We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
From the given equation, we have
`cos theta + cos^2 theta = 1`
`=> cos theta = 1 - cos^2 theta`
`=> ccos theta = sin^2 theta`
`=> sin^2 theta = cos theta`
Therefore, we have
sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2
`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2`
`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`
`= (sin^4 theta + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`
`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`
= (1)^3 + 2(1) - 2
= 1
hence proved
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
9 sec2 A − 9 tan2 A is equal to
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
cos θ. sec θ = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`