Advertisements
Advertisements
प्रश्न
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
उत्तर
L.H.S = `cot^2"A"[(sec"A" - 1)/(1 + sin "A")] + sec^2"A"[(sin"A" - 1)/(1 + sec"A")]`
= `(cot^2"A"(sec"A" - 1)(sec"A" + 1) + sec^2"A"(sin"A" - 1)(sin"A" + 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A"(sec^2"A" - 1) + sec^2"A"(sin^2"A" - 1))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx tan^2"A" + sec^2"A"( - cos^2"A"))/((1 + sin"A")(1 + sec"A"))`
= `(cot^2"A" xx 1/cot^2"A" - sec^2"A" xx 1/sec^2"A")/((1 + sin"A")(1 + sec"A"))`
= `(1 - 1)/((1 + sin"A")(1+ sec"A"))`
= `0/((1 + sin"A")(1 + sec"A"))`
= 0
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If cos θ = `24/25`, then sin θ = ?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?