Advertisements
Advertisements
प्रश्न
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?
विकल्प
Only 1
Only 2
Both 1 and 2
Neither 1 nor 2
उत्तर
Only 1
Explanation:
From statement 2: cosec2θ – cot2θ = 1 is correct
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`