Advertisements
Advertisements
प्रश्न
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
उत्तर
L.H.S = `(tan^2 theta - 1)/(tan^2 theta + 1)`
= `(tan^2 theta - 1)/(sec^2 theta)`
= `(sin^2 theta)/(cos^2 theta) - 1 ÷ 1/(cos^2 theta)`
= `(sin^2 theta - cos^2 theta)/(cos^2 theta) xx (cos^2 theta)/1`
= sin2θ − cos2θ
= 1 − cos2θ − cos2θ
= 1 – cos2θ
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Find the value of ( sin2 33° + sin2 57°).
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.