Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
उत्तर
L.H.S. = `sqrt(sec^2A + cosec^2A)`
= `sqrt(1/cos^2A + 1/sin^2A)`
= `sqrt((sin^2A + cos^2A)/(sin^2Acos^2A)`
= `sqrt(1/(sin^2Acos^2A)`
= `sqrt(1/(sinAcosA))`
R.H.S. = tan A + cot A
= `sinA/cosA + cosA/sinA`
= `(sin^2A + cos^2A)/(sinAcosA)`
= `1/(sinAcosA)`
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If `sec theta + tan theta = x," find the value of " sec theta`
sec4 A − sec2 A is equal to
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sin A = `1/2`, then the value of sec A is ______.