Advertisements
Advertisements
प्रश्न
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
उत्तर
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
LHS=`cos^2theta/((1-tan theta))+sin ^3theta/((sin theta - cos theta))`
=`cos^2theta/(1-sintheta/costheta)+sin^3 theta/((sin theta-costheta))`
=`cos^3 theta/((cos theta-sin theta))+ sin ^3 theta/((sintheta-cos theta))`
=`(cos^3theta-sin^3 theta)/((costheta - sin theta))`
=`((cos theta-sintheta)(cos^2 theta+cos theta sin +sin^2theta))/((costheta-sintheta))`
=`(sin^2theta + cos^2 theta + cos theta sin theta)`
=`(1+sin theta cos theta)`
=RHS
Hence, L.H.S = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
(1 – cos2 A) is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ