Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
उत्तर
We have to prove `cos^2 theta/sin theta - cosec theta + sin theta = 0`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cos^2 theta/sin theta - cosec theta + sin theta = (cos^2 theta/sin theta - cosec theta) = sin theta`
`= (cos^2 theta/sin theta - 1/sin theta) = sin theta`
`= ((cos^2 theta - 1)/sin theta) + sin theta`
`= ((-sin^2 theta )/sin theta) + sin theta`
`= - sin theta = sin theta`
= 0
APPEARS IN
संबंधित प्रश्न
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Define an identity.
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Choose the correct alternative:
1 + cot2θ = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A