हिंदी

Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = 3 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`

योग

उत्तर

L.H.S = tan 7° × tan 23° × tan 60° × tan 67° × tan 83°

= tan 7° × tan 23° × `sqrt(3)` × tan(90° – 23°) × tan(90° – 7°)

= `sqrt(3)` × [tan 7° × tan(90° – 7°)] × [tan 23° × tan(90° – 23°)]

= `sqrt(3) xx 1 xx 1`    ......[∵ tan θ × tan(90° – θ) = 1]

= `sqrt(3)`

= R.H.S

∴ tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.5

संबंधित प्रश्न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×