Advertisements
Advertisements
प्रश्न
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
उत्तर
L.H.S = tan 7° × tan 23° × tan 60° × tan 67° × tan 83°
= tan 7° × tan 23° × `sqrt(3)` × tan(90° – 23°) × tan(90° – 7°)
= `sqrt(3)` × [tan 7° × tan(90° – 7°)] × [tan 23° × tan(90° – 23°)]
= `sqrt(3) xx 1 xx 1` ......[∵ tan θ × tan(90° – θ) = 1]
= `sqrt(3)`
= R.H.S
∴ tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Eliminate θ if x = r cosθ and y = r sinθ.