Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
उत्तर
sin θ + cos θ = `sqrt(3)` ......[Given]
∴ (sin θ + cos θ)2 = 3 ......[Squaring on both sides]
∴ sin2θ + 2sinθ cosθ + cos2θ = 3 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ (sin2θ + cos2θ) + 2sinθ cosθ = 3
∴ 1 + 2 sin θ cos θ = 3 ......[∵ sin2θ + cos2θ = 1]
∴ 2 sin θ cos θ = 2
∴ sin θ cos θ = 1 ......(i)
tan θ + cot θ = `sintheta/costheta + costheta/sintheta`
= `(sin^2theta + cos^2theta)/(costhetasintheta)`
= `1/(sintheta costheta)` ......[∵ sin2θ + cos2θ = 1]
= `1/1` ......[From (i)]
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Find the value of sin 30° + cos 60°.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0