हिंदी

If sin θ + cos θ = 3, then show that tan θ + cot θ = 1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1

योग

उत्तर

sin θ + cos θ = `sqrt(3)`     ......[Given]

∴ (sin θ + cos θ)2 = 3    ......[Squaring on both sides]

∴ sin2θ + 2sinθ cosθ + cos2θ = 3  ......[∵ (a + b)2 = a2 + 2ab + b2]

∴ (sin2θ + cos2θ) + 2sinθ cosθ = 3

∴ 1 + 2 sin θ cos θ = 3   ......[∵ sin2θ + cos2θ = 1]

∴ 2 sin θ cos θ = 2

∴ sin θ cos θ = 1   ......(i)

tan θ + cot θ = `sintheta/costheta + costheta/sintheta`

= `(sin^2theta + cos^2theta)/(costhetasintheta)`

= `1/(sintheta costheta)`   ......[∵ sin2θ + cos2θ = 1]

= `1/1`    ......[From (i)]

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.5

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


` tan^2 theta - 1/( cos^2 theta )=-1`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


Write the value of cosec2 (90° − θ) − tan2 θ. 


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Find the value of sin 30° + cos 60°.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×