हिंदी

`(Cos^3 Theta +Sin^3 Theta)/(Cos Theta + Sin Theta) + (Cos ^3 Theta - Sin^3 Theta)/(Cos Theta - Sin Theta) = 2` - Mathematics

Advertisements
Advertisements

प्रश्न

`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`

उत्तर

LHS= `(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) `

       =` ((cos theta + sin theta)(cos^2 theta- cos theta sin theta + sin^2 theta))/((cos theta + sin theta)) + ((cos theta - sin theta )(cos^2 theta+ cos theta  sin theta + sin^2 theta))/((cos theta - sin theta))`

    =` (cos^2 theta + sin ^2 theta - cos theta sin theta ) + ( cos^2 theta + sin^2 theta + cos theta sin theta)`

    =`(1- cos theta sin theta) +( 1+ cos theta sin theta)`

    = 2
    = RHS
  Hence, LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 22

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


 Evaluate sin25° cos65° + cos25° sin65°


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×