Advertisements
Advertisements
प्रश्न
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
उत्तर
LHS= `(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) `
=` ((cos theta + sin theta)(cos^2 theta- cos theta sin theta + sin^2 theta))/((cos theta + sin theta)) + ((cos theta - sin theta )(cos^2 theta+ cos theta sin theta + sin^2 theta))/((cos theta - sin theta))`
=` (cos^2 theta + sin ^2 theta - cos theta sin theta ) + ( cos^2 theta + sin^2 theta + cos theta sin theta)`
=`(1- cos theta sin theta) +( 1+ cos theta sin theta)`
= 2
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Evaluate sin25° cos65° + cos25° sin65°
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ