Advertisements
Advertisements
प्रश्न
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
उत्तर
`tan35^circ cot(90^circ - θ) = 1`
Given `tan35^circ cot(90^circ - θ) = 1`
⇒ `tan35^circtanθ = 1`
⇒ `tan35^circ = cotθ`
⇒ `tan35^circ = tan(90^circ - θ)`
⇒ `90^circ - θ = 35^circ`
⇒ `θ = 55^circ`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1