Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
उत्तर
We need to prove `(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Using the property `cos^2 theta + sin^2 theta = 1` we get
LHS = `(1 + cos A)/sin^2 A = (1 + cos A)/(1 - cos^2 A)`
Further using the identity, `a^2 - b^2 = (a + b)(a - b)` we get
`(1 + cos A)/(1 - cos A) = (1 + cos A)/((1 - cos A)(1 + cos A))`
`= 1/(1 - cos A)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(sec^2 theta-1) cot ^2 theta=1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
Which is not correct formula?
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.