Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
उत्तर
We need to prove `(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Using the property `cos^2 theta + sin^2 theta = 1` we get
LHS = `(1 + cos A)/sin^2 A = (1 + cos A)/(1 - cos^2 A)`
Further using the identity, `a^2 - b^2 = (a + b)(a - b)` we get
`(1 + cos A)/(1 - cos A) = (1 + cos A)/((1 - cos A)(1 + cos A))`
`= 1/(1 - cos A)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Show that tan4θ + tan2θ = sec4θ – sec2θ.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.