Advertisements
Advertisements
प्रश्न
Show that tan4θ + tan2θ = sec4θ – sec2θ.
उत्तर
L.H.S = tan4θ + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ.sec2θ ...[∵ sec2θ = tan2θ + 1]
= (sec2θ – 1).sec2θ ...[∵ tan2θ = sec2θ – 1]
= sec4θ – sec2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If tan θ = `13/12`, then cot θ = ?
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
Eliminate θ if x = r cosθ and y = r sinθ.