मराठी

`Cot^2 Theta - 1/(Sin^2 Theta ) = -1`A - Mathematics

Advertisements
Advertisements

प्रश्न

`cot^2 theta - 1/(sin^2 theta ) = -1`a

उत्तर

LHS = `cot^2 theta - 1/ (sin^2 theta)`

       = `(cos^2 theta )/(sin^2 theta) - 1/(sin^2 theta)`

       =`(cos^2 theta -1)/(sin^2 theta)`

      =` (- sin^2 theta )/(sin ^2 theta)`

      =  -1

     = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 5.1

संबंधित प्रश्‍न

Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


` tan^2 theta - 1/( cos^2 theta )=-1`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


From the figure find the value of sinθ.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×