Advertisements
Advertisements
प्रश्न
`cot^2 theta - 1/(sin^2 theta ) = -1`a
उत्तर
LHS = `cot^2 theta - 1/ (sin^2 theta)`
= `(cos^2 theta )/(sin^2 theta) - 1/(sin^2 theta)`
=`(cos^2 theta -1)/(sin^2 theta)`
=` (- sin^2 theta )/(sin ^2 theta)`
= -1
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
` tan^2 theta - 1/( cos^2 theta )=-1`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
From the figure find the value of sinθ.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α