मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

If sec θ + tan θ = 3, complete the activity to find the value of sec θ – tan θ Activity: □ = 1 + tan2θ ......[Fundamental trigonometric identity] □ – tan2θ = 1 (sec θ + tan θ) . (sec θ – tan θ) = □ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

sec2θ = 1 + tan2θ    ......[Fundamental trigonometric identity]

sec2θ – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = 1

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `1/sqrt(3)` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.2 (A)

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


If `sec theta = x ,"write the value of tan"  theta`.


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Choose the correct alternative:

cos θ. sec θ = ?


If cos θ = `24/25`, then sin θ = ?


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×