Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
उत्तर
sec2θ = 1 + tan2θ ......[Fundamental trigonometric identity]
sec2θ – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = 1
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `sec theta = x ,"write the value of tan" theta`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Choose the correct alternative:
cos θ. sec θ = ?
If cos θ = `24/25`, then sin θ = ?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ