Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
उत्तर
We know that
`sec^2 theta - tan^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(sec^2 theta - 1)(cosec^2 theta - 1) = tan^2 theta xx cot^2 theta`
`= (tan theta xx cot theta)`
`= (tan theta xx 1/tan theta)^2`
`= (1)^2`
=1
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of cos1° cos 2°........cos180° .
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
tan θ cosec2 θ – tan θ is equal to
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If 2sin2θ – cos2θ = 2, then find the value of θ.