Advertisements
Advertisements
प्रश्न
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
उत्तर
LHS = `(sin"A"/cos"A")/(1 - cos"A"/sin"A") + (cos"A"/sin"A")/(1 - sin"A"/cos"A")`
= `(sin"A" sin"A")/(cos"A"(sin"A" - cos"A")) + (cos"A" cos"A")/((cos"A" - sin"A") sin"A"`
= `1/((sin"A" - cos"A")) [(sin^2"A")/cos"A" + (cos^2"A")/(-sin"A")]`
= `(sin^3"A" - cos^3"A")/(sin"A".cos"A"(sin"A" - cos"A"))`
= `((sin"A" - cos"A")(sin^2"A" + cos^2"A" + sin"A". cos"A"))/(sin"A". cos"A"(sin"A" - cos"A")`
= `(1 + sin"A". cos"A")/(sin"A".cos"A")`
= `1/(sin"A".cos"A") + (sin"A".cos"A")/(sin"A".cos"A")`
= `1/sin"A" . 1/cos"A"+ 1`
= sec A.cosec A + 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.