Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
उत्तर
We have to prove `cos^2 theta/sin theta - cosec theta + sin theta = 0`
We know that `sin^2 theta + cos^2 theta = 1`
So,
`cos^2 theta/sin theta - cosec theta + sin theta = (cos^2 theta/sin theta - cosec theta) = sin theta`
`= (cos^2 theta/sin theta - 1/sin theta) = sin theta`
`= ((cos^2 theta - 1)/sin theta) + sin theta`
`= ((-sin^2 theta )/sin theta) + sin theta`
`= - sin theta = sin theta`
= 0
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If 2sin2θ – cos2θ = 2, then find the value of θ.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.